
Supplementary Material

A. Implementation Details
We preprocess the dataset following the ARAH1. Dur-

ing optimization, we follow the same strategy from [4] to
densify and prune the 3D Gaussians, using the view-space
position gradients derived from the transformed Gaussians
in the observation space as the criterion for densification.

Our model is trained for a total of 15k iterations on the
ZJU-MoCap [5] dataset and 12k iterations on H36M [2] on
a single NVIDIA RTX 3090 GPU. We use Adam to opti-
mize our model and the per-frame latent codes with hyper-
parameters β1 = 0.9 and β2 = 0.999. The learning rate
of 3D Gaussians is exactly the same as the original imple-
mentation from [4]. We set the learning rate for forward
skinning network θr to 1 × 10−4, 5 × 10−4 for 3D sparse
U-Net, and 1 × 10−3 for all the others. An exponential
learning rate scheduler is employed to gradually decrease
the learning rate by a factor of 0.1 on neural networks. We
also apply a weight decay with a weight of 0.05 to the per-
frame latent codes.

Following prior works [6, 8], we split the training stage
and learn the whole model in a coarse-to-fine manner. In the
first 1k iterations, we freeze everything except the forward
skinning network fθr to learn a coarse skinning field with
Lskin. We then enable optimization on the 3D Gaussians
after 1k steps. To decouple rigid and non-rigid motion, we
start to optimize the non-rigid deformation network fθnr

af-
ter 3k iterations. Lastly, we turn on Geometric and Seman-
tic Feature Learning after 5k iterations.

B. Implementation Details for Baselines
In this section, we elaborate on the implementation de-

tails of baselines used for comparison to our proposed
method, i.e. NeuralBody [5], HumanNeRF [8], MonoHu-
man [9] and InstantAvatar [3].

For NeuralBody [5], HumanNeRF [8], MonoHuman [9]
and InstantAvatar [3], we use the results of them reported in
3DGS-Avatar [6] which follow the same data split.

For 3DGS-Avatar [6], we train the models using the code
from official code repository2. For GauHuman [1], we train
the models using the code from official code repository3 for

1https://github.com/taconite/arah-release
2https://github.com/mikeqzy/3dgs-avatar-release
3https://github.com/skhu101/GauHuman

15000 epochs. For GoMAvatar [7], we train the models
using the code from official code repository4. All other hy-
perparameters remain unchanged. The trained models are
then used for qualitative evaluation and out-of-distribution
pose animation.

C. Loss Definition

In the main paper we describe our loss term which can
be formulated as follows:

Lreconstruct =Lrgb + λ1Lmask + λ2LSSIM + λ3LLPIPS

+ λ4Lskin + λ5Lisopos, (1)

L = Lreconstruct + λ6Lsemantic + λ7Lneighborhood. (2)

We describe how each loss term is defined below:

RGB Loss. We employ an l1 loss for pixel-wise error
and a perceptual loss for robustness against local misalign-
ments, crucial in monocular setups.

Mask Loss. To boost the convergence of 3D Gaussian po-
sitions, we use an explicit mask loss. For each pixel p, we
compute the opacity value Op by summing up the sample
weights in the rendering equation in the main paper:

Op =
∑

i
α′
i

∏i−1

j=1
(1− α′

j). (3)

We thus supervise it with the ground truth foreground mask
via an l1 loss. Experiments show that the l1 loss provides
faster convergence than the Binary Cross Entropy (BCE)
loss.

SSIM Loss. We further employ SSIM to ensure the struc-
tural similarity between ground truth target image C and
synthesized images Ĉ:

LSSIM = SSIM(Ĉ, C). (4)

4https://github.com/wenj/GoMAvatar
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Figure 1. More visualization results on novel view and novel pose.



Figure 2. More comparison results on novel view with GauHuman [1].

LPIPS Loss. Following [8], we use VGG-based LPIPS
as the perceptual loss. Unlike NeRF methods, we render
full images via rasterization, eliminating the need for patch
sampling. For efficiency, we compute LPIPS on cropped
bounding boxes using ground truth masks:

LLPIPS = LPIPS(Ĉ, C). (5)

Skinning Loss: We leverage SMPL prior by sampling
1024 points Xskin on the surface of the canonical SMPL
mesh and regularizing the forward skinning network
with corresponding skinning weights w interpolated with



barycentric coordinates.

Lskin =
1

|Xskin|
∑

xskin∈Xskin

||fθr (xskin)−w||2. (6)

We set λ1 = 0.5, λ2 = 0.05, λ3 = 0.01, λ4 = 0.1, λ5 =
1, λ6 = 0.1, λ7 = 0.1 in all experiments. For λ4, we set
it to 10 for the first 1k iterations for fast convergence to
a reasonable skinning field, then decreased to 0.1 for soft
regularization.

D. More Visualization Results
We also provide extended visualization results to fur-

ther illustrate the robustness and versatility of our model
for 3D avatars generation, as shown in Fig. 1. Specifi-
cally, these include examples of avatars rendered from novel
views and with novel poses. These visualizations showcase
the model’s capacity to generalize effectively to new per-
spectives and body configurations, highlighting its poten-
tial in generating realistic and adaptable avatars across var-
ied viewing conditions and postures. We provide generated
videos in the project page5.

We also present additional results in comparison with
GauHuman [1], in Fig.2, demonstrating that our method
achieves significantly better rendering quality.
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